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Note 

Depolarization Correction for Coulomb Lattice Sums 

Two main approaches have been developed for calculating the Coulomb potential 
at a point inside a perfect crystal (the Madelung sum). The first, which is associated 
with the name of Evjen [l], is a direct summation (or integration) over whole unit-cells, 
with an expanding outer boundary that tends to a particular shape. In the second 
method (Ewald [2]), part of the series which is slowly convergent is transformed into 
reciprocal space so that it converges rapidly. The former method has the advantage of 
conceptual simplicity which, despite the disadvantage of poor convergence, recom- 
mends it to the computer programmer. But it is well known that the series for the 
potential is only semi-convergent, so that the limiting value of a direct sum depends 
on the choice of building-block and the shape of the boundary. The Ewald sums, on 
the other hand, are absolutely convergent and so define a principal value of the poten- 
tial, called the intrinsic potential, which is characterized by two important properties 
[3-61: (i) it displays the period of the crystal, and (ii) it averages to zero over the unit- 
cell. The difference between the potential represented by a direct sum and the Ewald 
value is called the extrinsic potential [6]. It is the potential due to the “macroscopic” 
or smoothed crystal [3], a distribution of charge which (if the crystal is electrically 
neutral) is concentrated near the surface and is known as the polarization charge. 
Thus, while the direct method applies to a perfectly regular crystal which is insulated 
from all foreign influence, the Ewald method corresponds to the case of a superficially 
distorting or uninsulated crystal which surrounds itself if required with a film of 
neutralizing charge. Any calculation that employs the direct method generally has 
to be corrected in order to recover the intrinsic value. The problem of determining 
the extrinsic potential was solved by Laue and others [7, 61, who showed it to be the 
product of the second moment of the crystallographic basis with the depolarization 
tensor from dielectric theory. Although it often vanishes by symmetry, this depolariza- 
tion correction must be considered in the case of the general crystal. 

One of the most practical versions of the direct method is the one propounded by 
Wood and others [&lo], in which the crystal is built up successively from similar 
shells of unit-cells. It is the purpose of the present note to describe a computational 
procedure, which implements the Laue formulas for the depolarization correction in 
the case of the Wood mode of direct summation. The summation itself will not be 
discussed. 

Perhaps the main use to which the program has been put is for computing the 
electric field due to a lattice of dipoles, a problem which arises in exploring the effect 
of polarizability in ionic crystals. 

Since the Laue derivation [7] is not widely known, it is worth while to reassert it 
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here, leading us to Eqs. (5) and (6) below. The charge density pmac(r) of the “macro- 
scopic crystal” is the convolution s t pl/a between the shape function s(r), which 
defines the occupied region of the crystal, and the charge density pi(r) of the crystallo- 
graphic basis or building-block, divided by the volume v of the unit-cell. This generates 
a field of macroscopic and extrinsic potential, $,, = pmac * r-l, which relates the 
intrinsic potential & to the direct summation +ds in the limit of the infinite crystal: 

Microscopic and macroscopic quantities can be disentangled from each other by 
expanding one of the convolutions as a Taylor series, whose terms are the scalar 
product of a moment and a gradient, and by introducing h as a scaling-parameter of 
the shape function and a measure of the size of the crystal. If the shape function is 
standardized by means of a macroscopic coordinate R, one can write s(hR) = s,(R), 
and so obtain 

VrL&(r + AR) = F (5 pi(r) * VrL A P] * VRn[sl(R) * R-r] X2-+. (2) 

For the limit of the infinite crystal one need only consider the process, h -+ co, which 
represents the geometrically congruent expansion of the boundary about the origin. 
Equation (2) shows that in this limit the terms of the series having n > 2 vanish. The 
terms n < 2 then provide the conditions of convergence of the direct sum in the limit 
process: 

pi(r) * 1 = 0 (L = 01, (3) 

bl(r) * V,%] * V&,(R) * R-l] = 0 (L = 0, 1). (4) 

Condition (3) requires the basis to be electrically neutral. Condition (4) is always 
satisfied in the Wood mode, because the shape function is centrosymmetric about the 
macroscopic field-point R = 0. Under these conditions, then, only the term n = 2 
remains, so that the limiting value of the expression (2) can be written as 

VrL&& R I p1 , sl) = [A pdr) * VtL &‘] * V2bl(W * R-II. (5) 

This factorization displays properties of the basis separately from properties of the 
shape function. 

From the first factor in Eq. (5) some simple properties of the different gradients of 
the extrinsic potential may be observed. The potential itself (L = 0) depends on the 
quadrupole and dipole moments of the basis, the electric field (L = 1) depends on its 
dipole moment and charge, the electric field gradient (L = 2) depends on its charge, 
while gradients of higher order vanish identically. It may be noted that, if the dipole 
moment and the irreducible quadrupole moment both vanish, +a becomes indepen- 
dent of r and of the shape of sl, and reduces to the mean potential of Bethe [ll]. 
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The second factor in Eq. (5) is the classical depolarization tensor. In the Wood 
mode, one sets s, = 1 within a central parallelepiped congruent with the Bravais 
unit-cell, and s, = 0 outside it. Then V&R) vanishes everywhere except on the 
surface, where one may resolve V,R-* into components across a face and within it, 
using a vector cross product. Thus, 

J* d3R[VR~l(R)][V,R-l] = i [&&Qi + &iii x fi dR R-l] 
i 

= Iv(D(faces) + D(edges)]. (6) 

Here iii is the unit-normal of the face i. In the first term IR denotes the solid angle 
that a face subtends at the origin, a quantity representing the potential due to a 
uniform double layer. Such an effect was remarked by Evjen in his original paper [I], 
and it was also derived by Dahl [lo]. The second term in Eq. (6) contains the potential 
due to a uniform line source, and was unfortunately neglected in the work of Dahl. 

Details of the trigonometry needed to compute the depolarization tensor (6) may 
now be stated. The Bravais unit-cell is generated by three vectors, a1 , a2 , a, , forming 
a right-handed system, and the volume D is their scalar triple product [alasa,]. We 
generate vectors normal to each face, ni = aj x ak , where($) is understood to be 
cyclic, and we define iii = ni/ni and bi = ii,/ni for i = 1, 2, 3. The vertices of the 
central parallelepiped lie at the points, co = $(a, + a2 + a,), ci = co - ai , and 
their reflexion through the origin. First let us consider the face terms. To compute 
the solid angle Szi of the face (Ojzk we divide it into two triangles (Ojk> and (@). 
Instead of L’Huilier’s theorem for the spherical excess E of a spherical triangle we 
use a more direct formula [12], 

t(Ojk) s tan &(Ojk) = +V/(CoCjCk + CoCj, + CjCk, + CkCoj), 

t(ijk) c tan &(ijk) = iV/(CiCjCk + CjCj, - CjCki - C*Cjj)y 

in which Cij = ci * ci . The compound tangent formula then gives 

(7) 

If this comes out to be negative, unity is added to ensure a positive solid angle. The 
face contributions to the depolarization tensor appear as the cyclic sum, 

D(faces) = i i&ii&/27r. 
i 

(9) 

Next is the edge effect, which rests on the result that the straight line integral of R-l 
between cj and c, with length ai has the magnitude, 

In ! 
Cj + Ck + aj 

) Cj + Ck - Ui ’ 
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Consequently the edge contributions to the depolarization tensor are a cyclic sum, 

in which Aij = ai * a, . 
The computer program has been organized in the following manner. To a main 

program which computes the direct sum, (2 * V)L~ds(r, 0 1 pr , sl), two subroutines 
have been added which compute the depolarization correction, so that the intrinsic 
value is obtained according to Eq. (1). In the main program the user has already 
defined the crystal by specifying the unit-cell of the Bravais lattice (which is not 
necessarily the primitive unit-cell of the crystal) and by furnishing it with a basis 
consisting of point charges ql at position rr . No restrictions are made on the crystal 
class. When the first of the subroutines, BASMOM, is called, the basis moments are 
evaluated at the field-point r, 

V-“p, * $r* = 1 qt & (r - r$ = M, (v = 0, 1, 2). 
2 

If these are not all zero, the lowest order N of nonzero moment is determined. The 
main program, after performing the direct summation over a given number of shells, 
forms an index of convergence, I = L + N. Then if I > 2, absolute convergence is 

(a) (b) 

FIG. 1. In the crystal structure of rocksalt, negative ions A, B, C, etc. alternate with positive ions 
P, Q, R, S, etc. on a unit cubic lattice, shown here by dashed lines. The same periodic structure can be 
built up using (a) a tetragonal unit-cell of volume v = 4, or (b) the primitive rhombohedral cell of 
v = 2. 
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indicated; if I = 0, there is divergence; while if I = 1 or 2, there is conditional 
convergence, and the second subroutine, MACCOR, is activated. MACCOR com- 
putes the elements of the depolarization tensor according to Eqs. (7)-(lo), brings 
in the above moments to compute the scalar product (5), and finally returns the 
value, SMAC = -(A * V)L&&, 0 / p1 , sl), as the depolarization correction which 
is required. 

The program is designed to reproduce the same intrinsic value, no matter what 
periodically equivalent definition of the crystal is used for the direct summation. While 

TABLE I 

Potential contributions, using some alternative parameters of shape and basis, evaluated at a negative- 
ion site (A) in rocksalt (see Fig. 1 for geometry).n 

Bravais cell Tetragonal 

D(faces); 
1 

- arcos 
x 

500 ;o 

D(edges) o;o 

00; 1 

Basis I APBQ ~ APCR 

1.74756 0.51661 
0 -1.23096 
0 0 
1.74756 1.74757 

I- Rhombohedral 

AQ I AS 

0.70037 -0.17154 
- 1.04720 - 1.04720 

0 -0.87191 
I .74756 1.74756 

a Face and edge contributions to the depolarization tensor D, and the second moment M, of the 
basis about A, are given in Cartesian components. The potential terms are & , computed as the 
limit of a direct sum over a greater unit-cell (Wood mode); the face and edge contributions to the 
extrinsic potential, +,, = -(477/u) M, *D [Eq. (5)]; and the intrinsic resultant, &, = $a9 - +,, . 

the choice of Bravais lattice corresponds, through its unit-cell, to a choice in the shape 
of the crystal, and while the selectionof ions for the basis affects the surfacecomposition 
of the crystal, the direct and extrinsic contributions to the potential should vary 
equally with these parameters. Some instructive tests of this intrinsic invariance 
are offered by the rocksalt structure shown in Fig. I, and here the program has indeed 
reproduced the standard Madelung constant (i.e., the intrinsic potential at a negative- 
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ion site) [4] with an accuracy of one part in 105. Details of the computations are given 
in Table I. Thus, when the tetragonal cell is chosen [Fig. la] with a basis consisting 
of a nearest-neighbor square of ions, the direct sum converges to the intrinsic value; 
but if a different quadrupole is taken as the basis, there is a different t$es , and a nonzero 
4ex arising from face contributions. When the primitive rhombohedral cell is chosen 
[Fig. lb] with a pair of nearest neighbors as the basis, the resulting $,, comes from 
face contributions; but if the third-neighbor pair on the body diagonal is selected, 
there are edge contributions as well, so that #es and &, have opposite sign. 

The subroutines described here are available in the form of FORTRAN source 
listings from the author. 
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